Effect of Various Polymers Concentrations on Physicochemical Properties of Floating Microspheres
نویسندگان
چکیده
Floating microspheres have emerged as a potential candidate for gastroretentive drug delivery system. For developing a desired intragastric floatation system employing these microspheres, it is necessary to select an appropriate balance between buoyancy and drug releasing rate. These properties mainly depend on the polymers used in the formulation of the microspheres. Hence it is necessory to study the effect of these polymer concentrations on the various physicochemical properties of the microspheres. Floating microspheres were prepared by emulsion solvent evaporation technique utilising different polymers such as ethyl cellulose, Eudragit(®) RS and Eudragit(®) RL by dissolving them in a mixture of dichloromethane and methanol. Release modifiers studied were hydroxypropyl methylcellulose K4M, hydroxypropyl methylcellulose E50 LV and Eudragit(®) EPO. Prepared microspheres were analysed for particle size, surface morphology, entrapment efficiency, buoyancy, differential scanning calorimetry and in-vitro drug release. Ethyl cellulose and Eudragit(®) EPO resulted microspheres with high percentage yield, excellent spherical shape but had very less buoyancies with a high cumulative drug release. Ethyl cellulose microspheres prepared using hydroxypropyl methylcellulose K4M showed more sustained drug release and high buoyancies than that of the microspheres formulated with the hydroxypropyl methylcellulose E50 LV. Amongst these hydroxypropyl methylcellulose E50 LV showed good balance between buoyancy and the drug release.
منابع مشابه
Floating microspheres encapsulating carvedilol for the effective management of hypertension
Carvedilol (CVD) is an antihypertensive agent with a short half-life, pH-dependent solubility, and narrow absorption window. The purpose of this research was to prepare a floating-drug delivery-system of carvedilol to increase its half-life. The present study investigates the preparation of carvedilol-floating microspheres, evaluates the floating-drug delivery-system (FDDS) (by scanning electro...
متن کاملCefpodoxime Proxetil Floating Microspheres: Formulation and In Vitro Evaluation
The objective of the present study was to develop floating microspheres of cefpodoxime proxetil in order to achieve an extended retention in the upper GIT, which may result in enhanced absorption and thereby improved bioavailability. The microspheres were prepared by non-aqueous solvent evaporation method using polymers such as hydroxyl propyl methyl cellulose (HPMC K 15 M), ethyl cellulo...
متن کاملPreparation and in vitro characterization of porous carrier-based floating microspheres of model drug for gastric delivery
Floating microspheres have been utilized to obtain prolonged and uniform release of drug in the stomach for development of once-daily formulations. A controlled-release system designed to increase residence time in the stomach without contact with the mucosa was achieved through the preparation of floating microspheres by the emulsion solvent diffusion technique, using (?) calcium silicate (CS)...
متن کاملPreparation and in vitro Characterization of Porous Carrier–Based Glipizide Floating Microspheres for Gastric Delivery
Floating microspheres have been utilized to obtain prolonged and uniform release of drug in the stomach for development of once-daily formulations. A controlled-release system designed to increase residence time in the stomach without contact with the mucosa was achieved through the preparation of floating microspheres by the emulsion solvent diffusion technique, using (i) calcium silicate (CS)...
متن کاملResearch Paper Preparation and Characterization of Gastroretentive Floating Microspheres of Ofloxacin Hydrochloride
As Ofloxacin is preferably absorbed from the upper part of the gastrointestinal tract and is readily soluble in the acidic environment of the stomach, the floating microspheres of ofloxacin were formulated to develop gastroretentive formulation. These floating microspheres release the drug in the stomach and upper gastrointestinal tract and thereby improve the bioavailability. In the present st...
متن کامل